
Digital/on-demand printing
(Prof. J. Brugger)

• Basics of (inkjet) droplets

• Advanced concepts for resolution improvement (EHD, …)

• Other additive methods of relevance (LIFT, MEW,…)

MICRO-413 (Brugger/Moser) Spring  2025 1



CIJ & DoD Inkjet Printing

Objectives

• Understand continuous & drop-on-demand inkjet printing

• Learn how to create single drops and how they interact with 
the substrate

Content

• History of inkjet printing

• Methods of producing micro drops

• Drop-substrate interaction

• Drop drying phenomena

• Application examples
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Material to read

Inkjet printing books

• Microdrop Generation, Eric R. Lee, CRC Press

Inkjet printing papers:

• B. Derby, Annu. Rev. Mater. Res. 40 (2010), 395-414

• Nalian et al. Langmuir 2014, 30, 44, 13470-13477

• B.J. de Gans, Advanced materials, 2004

New review:

• Detlef Lohse, Fundamental Fluid Dynamics Challenges in Inkjet Printing, Annual 
Review of Fluid Mechanics 2022 54:1, 349-382 
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Interest for single droplets science and 
technology is enormous

Self-confined space for conducting chemo-
physical experiments, cells, interfaces, etc.

Digital droplet technologies in life-sciences.



Brief history of printing
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Millikan’s oil drop experiment

The oil drop experiment was an 
experiment performed by Robert A. 
Millikan and Harvey Fletcher in 1909 to 
measure the elementary electric charge 
(the charge of the electron). The 
elementary charge e is one of the 
fundamental physical constants and its 
accurate value is of great importance. In 
1923, Millikan won the Nobel Prize in 
physics, in part because of this 
experiment.
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Historical milestones

• Sweet (1965) develops 
continuous IJP (first device 
patented in 1952)

• Zoltan (1972) and Kyser & Sears 
(1976) develop drop-on-demand 
(DOD) IJP
(first device patented in 1950)

• IJP used to produce DNA 
microarrays played a major role 
in the Human Genome Project 
(late 1990’s)
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About drops

https://commons.wikimedia.org/wiki/File:Pendant_drop_test.svg#/media/File:Pendant_drop_te
st.svg
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https://www.gettyimages.ch/detail/video/high-speed-extreme-close-up-
water-drops-falling-stock-videomaterial/605-18



Surface tension (reminder)
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Q: Capillary length of water?

L cap = (γ /ρg)1/2

~2-3 mm
A



Some numbers as scale reference

•Microdrop Generation, Eric R. Lee, CRC Press
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Drop shapes

https://commons.wikimedia.org/wiki/File:Rain
drops_sizes.svg#/media/File:Raindrops_sizes.sv
g



Some numbers

•Microdrop Generation, Eric R. Lee, CRC Press
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Small volume dispensing

physwww.physics.mcmaster.ca
www.ncbi.nlm.nih.gov
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Pipetting Printer ?



Methods of producing mono-disperse micro 
drops in free-flight*

*not by contact

CJP versus DOD



Water jet becomes unstable

Oil is different
Hot chocolate fountain
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7 events and physical processes
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1. Flow and acoustics in the inkjet printhead
2. Bubbles
3. Nozzle wetting
4. Jetting process
5. Drop impact and spreading
6. Drop coalescences, surface interaction
7. Drop evaporation and solidification



Forming microdroplets from a nozzle

Tip streaming
(field- or flow-induced)

Continuous DOD
Basaran et al., Annu. Rev. Fluid Mech. 2013
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Drop generation by continous jet

Drop generation typically results from 
the instability of a liquid column through 
an external perturbation

a. Rayleigh-Plateau (capillary) 
instability:
mechanical perturbation

b. Thermal-capillary:
pressure gradient

c. Marangoni (thermocapillary):
surface tension gradient
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Continuous inkjet printing

• General principle
– A jet is pushed out of the nozzle by 

pressure

– The liquid column is broken into drops by 
the Rayleigh instability

• Additional features
– Drops are charged by nozzle potential 

relative to ground

– Deflector plates: drops either toward 
substrate or toward gutter and recycled 
(unwanted drops)
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By PT Megasatria Hiciter - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=66813616

Continuous inkjet printing
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From CJP versus DOD:

we need to induce a perturbation/momentum as 
f(t) to a liquid volume so that it overcomes the 

surface tension and can form droplets



DOD IJP - Thermal IJP 

• Thermal IJP (a.k.a. “Bubble jets”)

• A metallic element (e.g. thin film resistor) 
is heated generating a bubble which collapses 
shortly afterwards

• The collapse leads to a pressure wave which 
propagates until the tip of the nozzle

• At nozzle tip the pressure wave generates a 
drop (on demand)

• Easy to integrate into dense arrays of nozzles

• High speed printing

• Affordable

• Dominate the low-end color printer market
B. Derby, Annu. Rev. Mater. Res. 2010

MICRO-413 (Brugger/Moser) Spring  2025 23



DOD IJP - Piezoactuated IJP 

• A piezo-element (i.e. piezoelectic 
actuator) receives an electric pulse 
and induces a compression (small 
deformation) of the capillary tube.

• This leads to the formation of a 
pressure wave which propagates 
through the capillary in both 
directions.

• At the nozzle tip, the sum pressure 
wave will break the jet of liquid, 
generating a drop

Piezoactuated DOD IJP: 

The most used devices

B. Derby, Annu. Rev. Mater. Res. 2010
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DOD IJP - Piezoactuated IJP 

1. Capillary compression (pressure)

2. Wave propagates in  both directions

3. Reflections on both ends

4. The waves meet again when new impulse 
is applied

5. One wave (toward open end) is 
annihilated while other one is enhanced

6. The pressure is 4x the applied one 
→ Drop generation

D. B. Bogy and F. E. Talk ” Experimental  and  
Theoretical  Study of Wave  Propagation  Phenomena  

in  Drop-on-Demand Ink Jet  Devices”. IBM  J.  RES.  

DEVELOP., 28  (3), 1984 
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Experimental

H. Wijshoff , Phys. Rep. 491 (2010) 

DOD IJP - Piezoactuated IJP 

1. Equilibrium

2. Ejection and Fluid jet generation

3. Fluid jet destabilization

4. Drop break off (at the position of the 
largest jet curvature variation) and 
fluid jet withdraw

5. Capillary action refill

6. Ready to eject

E. Lee, “Microdrop Generation”, CRC 
Press 2003
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Drop size modulation by pulse shaping

• Typical pulse parameters
– Pulse amplitude

– Rise, Dwell and Fall times

• Varying pulse parameters enables to 
create droplets with smaller diameter 
than the nozzle orifice
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Thermal vs Piezo IJP

Thermal IJP

Drop-on-demand system

Thermal actuation (bubble)

Heat generation

Cannot be used with thermal sensitive 
inks

Lower resolution 

Lower durability (heating damages the 
heads over time)

Lower costs of production

Piezo IJP

Drop-on-demand system

Piezo actuation

No heat generation

Do not damage the ink

Larger range of ink compatibility

Better durability

Higher resolution

Higher costs of production
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How to observe inkjet drops?

drop ejection video

High speed camera: Stroboscope
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https://www.youtube.com/watch?v=YcxzDxIT358
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How to design inks that can be printed?



Relevant dimensionless numbers

General parameters that determine inkjet printability
Ink: Density (ρ), Surface tension (σ), Dynamic viscosity (μ)

System: Liquid velocity (v), Characteristic length (L), Nozzle aperture diameter (d)

Relevant dimensionless numbers:
Reynolds number, Re (~inertia/viscosity)

Weber number, We (~inertia/surface tension)

Ohnesorge number, Oh

Parameter Z (defined by Fromm, 1984):
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(Polymer) Ink printability

Inkjettable for:

1 < Z < 10 
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Reynolds number
Weber number
Capillary number
Ohnesorge number
Deborah number
Womersley number
Stokes number
Péclet number
Schmidt number
Prandtl number
Lewis number
Marangoni number
Damköhler number



Newtonian / Non-Newtonian solutions

Newtonian fluids

• Viscous stresses arising from flow are linearly proportional to the local strain  
(i.e. viscosity is independent of shear rate)

• Examples : Water, Mineral oils, fluids with low molecular weight

Non-newtonian fluid (typically polymers)

• For most of non-Newtonian fluids, viscosity decreases with increasing shear rate

• General mechanism: Uncoiling and decoupling of entangled polymer chains, which 
under high shear can move independently and align with the direction of the fluid 
flow (=> Viscosity reduction for limited range of shear rates). 

• Examples : Blood, Paints, fluids with long polymer chains …
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Influence of polymer molecular weight
Example of polymer containing ink with 
different MW

• Newtonian (short filament length and absence 
of satellites)

a) Glycerol  / Water

• Non-Newtonian (long filament length and 
presence of satellites)

b) 0.3 % Mw  of 100’000 poly(ethylene oxide)

c) 0.1 % Mw  of 300’000 poly(ethylene oxide)

d) 0.05 % Mw  of 1’000’000 poly(ethylene 
oxide)

e) 0.043 % Mw  of 5’000’000 poly(ethylene 
oxide)

B.J. de Gans, Adv. Mater. 2004 
Y . Christianii et al., J. Rheol. 2002
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Inkjet printing of polymers

• Main characteristics for the case of polymers

• Drop generation characterized by an elongating filament (as 
observed precedent slide a-e)

• The disintegration of the filament begins with the formation of a 
pinch point above the main droplet and satellite droplets along the 
filament before rupture occurs

• Above a certain concentration, the capillary force is not able to break 
the filament and the ejected droplet retracts back into the nozzle.
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Inkjet printing of polymers

• Summary

• Typically viscosities of polymeric solutions (non diluted) are in the range of 0.5 – 
10 Pas

• Polymers are usually inkjet printed as diluted solutions (with solvents)

• Allows reducing the viscosity (similarly as for thin layers after spin-coating)

• Solutions of polymers directly inkjet printable (solvent free) with low viscosities 
(approx. 20 mPa-s) are commercially available 

• The type of monomers / oligomers which are in the solution implies a more or 
less non-Newtonian behavior
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IJP 3 Steps

1. Inkjet printing is about formation of ultra small droplets 

2. Positioning the droplets precisely on the substrate 

3. Drying process to form the pattern directly to any kind of 
substrate 
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7 events and physical processes
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1. Flow and acoustics in the inkjet printhead
2. Bubbles
3. Nozzle wetting
4. Jetting process
5. Drop impact and spreading
6. Drop coalescences, surface interaction
7. Drop evaporation and solidification



IJP: example of an experimental setup 

[Jacot-Descombes et al., J. Micromech. Microeng. 22, 2012]
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Drop/substrate interaction

video drop landing

https://www.youtube.com/watch?v=lZZmCMXdsD4


Drop/substrate interaction

• Impact spreading - Final shape

• Drops on unpatterned substrates

• Surface Energy – Wenzel / Cassie-Braxter states

• Drops on patterned substrate

• Liquid confinement on substrates
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Droplet impact
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Drops on unpatterned substrates

Early stages:
kinetic effects

Impact

Spreading

Recoil

Late stages:
initial volume &
capillarity

Wetting

Evaporation

Solute deposition

Derby, Annu. Rev. Mater. Res. 2010
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Surface energy, Contact angle,
Young-Dupré equation

• At drop triple line, 3 interfaces => 3 surface energies:

• Interface solid liquid (ink)

• Interface liquid gas (air)

• Interface gas solid (substrate)

• Young-Dupré equation

• Contact angle

• Changing the surface energy, e.g. by self-assembled monolayers (SAMs)

• Change of the contact angle (Wettability property of the surface)
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Droplet merging
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Drop spacing

a. Drop spacing is too large for drop 
coalescence

b. Initial coalescence leads to a liquid 
bead with a periodic irregularity

c. After sufficient overlap smooth 
sidewalls occur

d. If drop spacing is too small, a 
bulging instability forms

The critical spacing is a function of the 
print head traverse speed relative to 
the substrate.
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Printed line behaviors

Morphology of the printed lines can change due to 
the temperature of the substrate and spacing 
between the neighboring droplets

a) Individual drops
b) Scalloped
c) Uniform
d) Bulging
e) Stacked coins

Trains of drops with pitches larger than final 
diameter do not coalesce.
Overlapping miscible drops coalesce into beads.
Contact line smoothing over time.
Too close drops induce bulges upon coalescence into 
beads.
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Surface energy
Effect of surface energy

• Same volume of SU8 printed on Si and SAM-coated Si

V. Fakhfouri, EPFL PhD thesis, 2008.
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Surface energy & topography

• Wenzel (1936): roughness amplifies chemical character
• Hydrophilic surface → Roughness → More hydrophilic

• Hydrophobic surface → Roughness → More hydrophobic

• Cassie-Baxter (1945): heterogeneous surfaces 
• Chemical heterogeneity & topography

• Macroscopic properties are mean of microscopic properties

• Air bubbles entrapped below liquid → fakir state

• Superhydrophobic state (>150 deg) 

• topography + low surface energy 
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wetting contrast

edge (mesa) edge (trenched)

✓ Easy to fabricate

• Almost conformal

▪ Sensitive to defects

lyophobiclyophilic

Mastrangeli et al., 
IEEE Trans. 2011
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Spherical shape by edge confinement
• Below the capillary length 

• Young-Dupré equation → contact angle

• Drop shape by surface tension only

• Surface energy => γSG changes

• Edge confinement

(Gibbs’ inequality, canthotaxis sector)

: Contact 
angle
: Edge angle
: Pinning MICRO-413 (Brugger/Moser) Spring  2025 53



IJP of optical microlens array

Joo Yeon Kim et al. Opt. Mater. Express 
1, 259-269 (2011) 
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Microlenses with arbitrary shapes

Cadarso, Opt. Express  (2011)
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Drops on patterned substrates

a. A droplet spread to its equilibrium 
configuration on a substrate

b. The presence of a fluid phobic stripe 
(yellow) will arrest spreading

c. A combination of two arrested drops defines 
the channel width between the source and 
drain beneath the gate for an all-polymer 
printed transistor

Derby, 
Annu. Rev. Mater. Res. 2010
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Drops in porous/channel surface

If a channel is cut or molded into a 
fluid-philic surface and 
subsequently a drop is deposited 
on the channel, the energetics of 
wetting will drive the fluid along 
the channel.

Derby, 
Annu. Rev. Mater. Res. 2010
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Drops on structured surface
a. A fluid drop is printed onto a 

fluidphilic substrate above a 
fluidphobic stripe (yellow)

b. Fluid flow within the drop is 
driven by dewetting energetics

c. Final structure results in two 
drops separated by the narrow 
fluidphobic stripe

d. A polystyrene sulfonic acid 
(PEDOT) solution drop is printed 
onto a solidified PEDOT structure 
that has been plasma treated to 
generate a fluidphobic surface 
(green)

e. The second drop is driven from 
the surface of the initial drop by 
dewetting

f. 2 drops are separated by a narrow 
region after solidification

Derby, 
Annu. Rev. Mater. Res. 2010
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Droplet drying 



Liquid assembly

60MICRO-413 (Brugger/Moser) Spring  2025Still et al., Langmuir 2012



Droplet drying
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Droplet drying on a substrate 

• Droplet containing single solvent 
• Higher evaporation rate at the contact line
• Convection flow from the apex to the contact line 

• Droplet containing mixture of solvents 
• Marangoni flow due to surface tension gradient
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Track formation by IJP

(a) Interferometric image of a track formed from the drying of a liquid bead showing 
distinct ridges at the edges that have formed by fluid flow during drying.

(b) Two line profiles across the track showing the variation in height across the track. 
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Co-solvent strategy

B. J. De Gans and U. S. Schubert, “Inkjet printing of well-defined 
polymer dots and arrays,” Langmuir, vol. 20, no. 18, pp. 7789–7793, 
2004.

Single solvent Mixed solvent 
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Droplet drying with mixed solvent

E. L. Talbot, A. Berson, L. Yang, and C. D. Bain, 29Th Int. Conf. Digit. Print. 
Technol., vol. 44, no. July, pp. 307–312, 2013.

• Mixed solvent ( ethanol / water)

• Mixed solvent ( methoxypropanol / water )

MICRO-413 (Brugger/Moser) Spring  2025 65



Summary of IJP

• Local deposition, quasi no-waste technique 
• Cost-efficient & environment friendly
• Non-contact technique, flexible & non-flat substrates
• R2R compatible
• No cleanroom required 
• Relatively affordable devices
• Large variety of material (inks)

– Polymers, Organic solutions (e.g. biological fluids, cells), Inorganic solutions (e.g. 
nanocrystals, metal particles, solder)

• Serial process → Time consuming (multi-nozzle)
• Challenging control of droplets, nozzle clogging, drying effects, …
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What you should know by now

• Understand continuous & drop-on-demand inkjet printing methods. 

• Remember how to create single drops

• How drops are interacting with the substrate

• How drops are drying
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